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We investigate the stability of stratified fluid layers undergoing homogeneous and
periodic tidal deformation. We first introduce a local model which allows us to study
velocity and buoyancy fluctuations in a Lagrangian domain periodically stretched
and sheared by the tidal base flow. While keeping the key physical ingredients only,
such a model is efficient in simulating planetary regimes where tidal amplitudes and
dissipation are small. With this model, we prove that tidal flows are able to drive
parametric subharmonic resonances of internal waves, in a way reminiscent of the
elliptical instability in rotating fluids. The growth rates computed via direct numerical
simulations (DNSs) are in very good agreement with Wentzel–Kramers–Brillouin
analysis and Floquet theory. We also investigate the turbulence driven by this
instability mechanism. With spatio-temporal analysis, we show that it is weak internal
wave turbulence occurring at small Froude and buoyancy Reynolds numbers. When
the gap between the excitation and the Brunt–Väisälä frequencies is increased, the
frequency spectrum of this wave turbulence displays a −2 power law reminiscent of
the high-frequency branch of the Garett and Munk spectrum (Geophys. Fluid Dyn.,
vol. 3 (1), 1972, pp. 225–264) which has been measured in the oceans. In addition,
we find that the mixing efficiency is altered compared to what is computed in the
context of DNS of stratified turbulence excited at small Froude and large buoyancy
Reynolds numbers and is consistent with a superposition of waves.
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1. Introduction

Tides affect the whole shape of planetary bodies, from their surface oceans to
their liquid cores and also their subsurface oceans in the case of icy satellites such
as Enceladus (Tyler 2009; Thomas et al. 2016). Such a mechanical forcing of the
topography of these layers is known for driving a wide variety of bulk flows in
planetary interiors (see Le Bars, Cébron & Le Gal (2015) for a review). It can
directly excite inertial waves (Ogilvie & Lin 2004; Goodman & Lackner 2009),
drive zonal flows (Tilgner 2007; Morize et al. 2010; Favier et al. 2014; Sauret, Le
Bars & Le Gal 2014) and generate turbulence from various instabilities. This is
the case for instance of the elliptical instability which, from the combination of
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the elliptical deformation and the planetary rotation, drives the resonance of inertial
waves (Kerswell 2002). Their growth saturates in either sustained turbulence (Grannan
et al. 2017; Le Reun et al. 2017) or cycles of turbulent bursts in which large-scale
vortices emerge and inhibit the instability (Kerswell 1999; Schaeffer & Le Dizès
2010; Barker & Lithwick 2013; Le Reun et al. 2017). Tides can therefore inject
energy into planetary fluid layers to sustain intense small-scale motions, this energy
being then dissipated via viscous friction. This is particularly interesting in the case
of planetary cores as it could provide an alternative stirring mechanism to thermal
and solutal convection usually invoked to explain dynamo action.

The large-scale tidal flow could also couple with buoyancy effects in the case
where these planetary interiors are stratified. Many planetary cores are thought to
be at least partly stably stratified while maintaining a large-scale magnetic field (see
Stanley & Mohammadi (2008) for a review). For instance, both experimental and
numerical determination of liquid iron’s thermal conductivity (see Labrosse (2015) and
references therein) and analysis of the periodicity of the magnetic field fluctuations
(Buffett 2014) point towards the existence of a stably stratified layer at the top of
the Earth’s core.

Several routes exist for the excitation of three-dimensional turbulent motion within
a stably stratified layer by tides or other mechanisms. It is a common issue in
physical oceanography where the interaction of the large-scale tidal flow with ground
topography is known for exciting (St. Laurent & Garrett 2002), focusing (Maas &
Lam 1995; Bajars, Frank & Maas 2013) and scattering (Bühler & Holmes-Cerfon
2011) internal waves which break down into small-scale turbulence via triadic resonant
interactions (MacKinnon & Winters 2005; Bourget et al. 2013; Scolan, Ermanyuk &
Dauxois 2013; Brouzet et al. 2016, 2017). In addition, several studies have strived
to examine the resonant excitation of global internal modes by a homogeneous tidal
flow without relying on any small-scale topography. This has been done for instance
by Miyazaki & Fukumoto (1992), Kerswell (1993), Miyazaki (1993), McWilliams &
Yavneh (1998), Aspden & Vanneste (2009), Guimbard et al. (2010) with either radial
or vertical stratification compared to deformation, but always in the situation where
the Coriolis force has greater or similar influence compared to the buoyancy effects.
Whether these resonant instabilities can drive three-dimensional turbulence in the bulk
of a stratified core or subsurface ocean in a non-rotating case remains to be seen.

In this paper, we derive a local model of fluid planetary interiors, be it a liquid
core or a subsurface ocean, which allows us to study the idealised limit where
stratification completely dominates over rotation, with the stratification axis pointing
in any direction relative to that of the tidal deformation. We show in particular that
tides excite a parametric subharmonic resonance of internal waves. Moreover, such
an idealised local model allows us to thoroughly analyse the turbulent saturation
of this tidally driven resonance. It is thus shown hereafter that it drives bulk wave
turbulence.

Note that parametric resonances of internal waves driven by large-scale homogeneous
forcing have already been investigated in particular experimental set-ups. McEwan
& Robinson (1975) designed a set-up to examine how large-scale internal waves
spontaneously generate smaller-scale oscillations in a stratified tank designed to
mimic the advection by large scales. In close analogy, Benielli & Sommeria (1996,
1998) showed that vertically shaking a stratified fluid leads to a parametric resonance
of internal waves (similarly to the classical Faraday instability) whose growth saturates
into turbulence. The originality of our study resides in the investigation of the stability
of a more realistic homogeneous tidal flow. We also provide a detailed spatio-temporal
analysis of the nonlinear breakdown into turbulence from the primary resonance.
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This paper is organised as follows. The first part is devoted to introducing the
tidal basic flow and developing a local approach to study its stability following
the work of Barker & Lithwick (2013) and Le Reun et al. (2017). We carefully
introduce buoyancy effects under the Boussinesq approximation. With this model, we
then investigate the resonance of internal waves via direct numerical simulations and
Wentzel–Kramers–Brillouin (WKB) analysis of the local model (Lifschitz & Hameiri
1991). We then thoroughly investigate the turbulence resulting from the nonlinear
saturation of the instability. We show that it is best described as a wave turbulence
and study the subsequent mixing and dissipation rates.

2. Local study of the equilibrium base flow
2.1. Tidal base flow

We consider a non-rotating planet undergoing tidal deformation due to a moon orbiting
at rate nez as pictured in figure 1. We suppose the tidal deformation to be ellipsoidal
and uniform in the whole fluid planetary interior; this assumption corresponds to
planetary cores or oceans in between two boundaries whose response to tidal force
is the same as that of the fluid. The other limit, which will not be considered here,
is an ocean on top of a non-deformable solid core or inside a non-deformable solid
shell for which the ellipticity of the deformation can no longer be considered uniform.
Any planetary fluid layer stands between these two limits.

In the reference frame following the tidal deformation, the base flow Ubulge
b can be

approximated to the following analytical solution (Sridhar & Tremaine 1992; Kerswell
2002; Barker 2016; Barker, Braviner & Ogilvie 2016):

Ubulge
b = γ

 0 −1− β 0
1− β 0 0

0 0 0

Xb

Yb

Zb

= BXb, (2.1)

where we have introduced γ =−n, the rotation rate of the fluid in the orbital frame,
by analogy with previous studies (Barker & Lithwick 2013; Le Reun et al. 2017),
and β the ellipticity of the tidal deformation defined as β= (a2

− b2)/(a2
+ b2) (where

a and b are the semi-major and semi-minor axes respectively, see figure 1). Xb is
the position vector whose coordinates are written in the orbital frame rotating with
the tidal bulge. The tidal flow (2.1) is an exact steady solution of the incompressible
Navier–Stokes equation in an ellipsoidal planetary fluid layer with stress-free boundary
conditions, under the assumption that the tidal potential is small compared to the
body self-gravity potential in its unperturbed spherical shape, and neglecting the
bulge self-gravity (Sridhar & Tremaine 1992; Barker 2016; Barker et al. 2016).
The base flow translates to the fact that the streamlines must be lying in the total
potential isosurfaces (including gravitational, tidal and rotational contributions) and
must match the solid body rotation in the limit β = 0 measured in the orbital frame.
They are therefore elliptical and parallel to the (xOy) plane. In planetary fluid layers,
the ellipticity of the tidal flow is usually below 10−3 (Cébron et al. 2012) and is
approximately 10−7 for the Earth’s core and oceans (without taking into account any
topographical effect). In the planetary reference frame the base flow Ub translates,
after coordinate change and velocity transformation, into (Goodman 1993; Barker &
Lithwick 2013):

Ub =−γβ

sin(2γ t) cos(2γ t) 0
cos(2γ t) − sin(2γ t) 0

0 0 0

X
Y
Z

= A(t)X. (2.2)
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FIGURE 1. Schematic representation of a companion orbiting a planet at rate n. Tidal
interactions induce an ellipsoidal deformation of the whole planet, which is supposed
uniform: this corresponds to the behaviour of a fully deformable planet.

This basic flow is also a solution of the full incompressible Navier–Stokes equations.
Both orbital and planetary frames of reference can be used for simulations. The orbital
frame, in which the base flow is steady and writes as in equation (2.1), is widely used
in global numerical simulations of tidal instabilities for it is numerically easier to keep
a constant boundary topography (see for instance Grannan et al. (2017) and Cébron,
Maubert & Le Bars (2010)). Conversely, the planetary frame can be more intuitive:
in the case of the Earth, it corresponds to an observer standing on the solid mantle
and feeling nearly two tides per day. The base flow in this frame only retains the
perturbations induced by tidal deformation.

Note that this basic flow is also a solution of the Navier–Stokes equations in
the presence of stable stratification in the Boussinesq approximation. Assuming an
equilibrium state for which isopycnals are also the surfaces with constant gravitational
potential φ, including centrifugal force and tides, the density can be written as
a continuous and monotonic function f of φ so that ρg = −f (φ)∇φ = −∇F(φ)
with dF/dφ= f . The equilibrium buoyancy term can then be absorbed in the pressure
gradient so that this basic situation is purely barotropic. Such a barotropic assumption
is valid when the isopycnals can move sufficiently fast to keep track of the orbital
motion of the moon and the rotating tidal potential; it is valid for high Brunt–Väisälä
frequency compared to the differential rotation frequency γ (see Ogilvie (2014) for
further discussion). In the opposite regime where the stratification is weaker, the
slow motion of the isopycnals should lead to baroclinicity and excite large-scale
flow consistently trying to restore the alignment between isopycnal and isopotential.
This paper is rather focused on small-scale instabilities in the regime where the
Brunt–Väisälä frequency is larger than γ . We therefore discard any baroclinic
situation to keep only the global tidal distortion as a source of instability. Tidally
driven baroclinicity should deserve a study of its own.

In the following, we introduce buoyancy effects under the Boussinesq approximation.
We study the tidal instability problem developing a local approach inspired by Barker
& Lithwick (2013). We use the planetary frame of reference, which is considered to
be non-rotating. Introducing rotation of this frame at rate Ωez in the model developed
hereafter would only require the addition of a Coriolis force in the planetary frame.
The base flow would not be modified apart from the fluid rotation rate in the orbital
reference frame γ which would then write γ = Ω − n (Barker & Lithwick 2013).
Neglecting planetary rotation is tantamount to assuming the buoyancy effects dominate
the dynamics compared to the Coriolis force. Studying the interplay between rotation
and stratification would require a separate study.
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2.2. The local approach to the dynamics
We aim at studying the incompressible perturbations to the basic flow Ub defined
in (2.2). Instead of modelling the whole planetary fluid layer, we develop a local
model to study this perturbation flow in the neighbourhood of a Lagrangian point
M at position X0(t) following the streamlines defined as Ẋ0 = Ub. This local model
will prove particularly convenient to include buoyancy effects as the stratification can
be assumed to be locally uniform and linear around the tracked point. It has already
been proposed in Barker & Lithwick (2013) to investigate the elliptical instability
in rotating constant density planetary and stellar interiors. We reproduce here its
derivation to carefully introduce buoyancy effects.

Let us call vi the total velocity field in the frame bound to the planet and vc the
total velocity field in the frame bound to X0. vi satisfies the following Navier–Stokes
equation:

∂τv
i
+ vi
· ∇Xvi

=−
1
ρ
∇Pi
+ ν∇2

Xvi, (2.3)

where τ stands for time, ∇X for the gradient in the X = (X, Y, Z) coordinates, Pi is
the pressure and ρ is the density of the fluid. vi is the total velocity and includes the
base flow Ub(X) and velocity perturbations ui so that vi

= Ub(X)+ ui. To transform
this equation into the frame in translation bound to X0, we process the following
coordinate change:

x=X−X0(t)
t= τ .

}
(2.4)

The corresponding changes in derivatives are ∇X = ∇x = ∇ and ∂τ = ∂t − Ub · ∇x.
The velocity measured in the frame bound to X0 is vc

= vi
−Ub(X0, t). Transforming

the equation (2.3) into this frame yields:

∂tv
c
+ ∂tUb(X0)+ vc

· ∇vc
=−

1
ρ
∇Pi(X0 + x)+ ν∇2vc. (2.5)

The acceleration term ∂tUb(X0) is regarded as a volume force. In the frame bound to
X0 the Navier–Stokes equation reads:

∂tv
c
+ vc
· ∇vc

=−
1
ρ
∇Pc
− ∂tUb(X0)+ ν∇

2vc, (2.6)

where we have introduced Pc(x)=Pi(X0+x). As vc
=vi
−Ub(X0), it is straightforward

that vc
= A x+ uc with uc

= ui
= u. In the neighbourhood of X0, the perturbed flow

satisfies the following equation:

∂tu+ A(t)x · ∇u+ A(t)u+ u · ∇u=−
1
ρ
∇Pc
− ∂tUb(X0)+ ν∇

2u (2.7)

along with the incompressibility condition ∇ · u= 0.

2.3. Lagrangian effects of the base flow
This paragraph aims at exhibiting the Lagrangian trajectory of the point M at X0 to
provide a better understanding of the model derived in the preceding paragraphs. The
Lagrangian equation Ẋ0=Ub(X0) can be solved analytically and the position of M at
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FIGURE 2. Trajectory of an initially square patch of fluid for an ellipticity β = 0.5
represented in the orbital frame (a) in which the bulge has a stationary shape, and in the
planetary frame (b). The four configurations correspond to the same instants. The solid
black line materialises the trajectory of the centre of the patch. This picture highlights
the periodic stretching and shearing undergone by the Lagrangian parcel.

any time can be related to the initial position (X0i, Y0i, Z0i) by the following relation:

X0 =Rot(−γ t)

 cos($ t) −E sin($ t) 0
1
E

sin($ t) cos($ t) 0
0 0 1


X0i

Y0i
Z0i

 , (2.8)

where Rot(−γ t) is a rotation matrix of angle −γ t around the Z axis. $ and E are
defined as follows:

$ = γ
√

1− β2 and E =

√
1+ β
1− β

. (2.9a,b)

The corresponding trajectories are plotted in figure 2 for β = 0.5, γ = 1 and an
initial condition (1, 0, 0). The equivalent trajectory in the orbital frame (consistently
aligned with the moon) is also indicated for comparison. In the small β limit, it can
be shown that, in the planetary frame, the Lagrangian particle rotates around the Z
axis at rate −γβ2/2, the corresponding acceleration being negligible. Around this slow
mean rotation corresponding to a Stokes drift with velocity ∼ γβ2` with ` the average
distance from the centre of the planetary body, the particle also accomplishes epicycles
at a much higher rate γ /2 with a displacement of order β` and velocity βγ `.

To materialise the local effects of the basic flow, we also plot in figure 2 the
trajectories of four points forming a square pattern around the tracked point. It can
be noticed that this pattern is stretched and sheared during an epicycle and rotates as
the particle moves around the Z axis. Note that the slow mean rotation around the
Z axis is exaggerated in figure 2 because of the very high ellipticity. This periodic
stretching and shearing may drive internal wave parametric instability, in close analogy
to the elliptical instability in rotating fluids (Kerswell 2002).

2.4. Introducing buoyancy in the local Navier–Stokes equation
The local model introduced above is particularly useful when introducing buoyancy
effects, be it due to temperature or solute concentration. In a sufficiently small patch,
the background stratification can be assumed to be uniform, while being mostly radial
in global planetary layers. Let us call S(t) the background active scalar gradient such
that the total scalar field T can be written as:

T = T0 + S(t) · x+ ϑ, (2.10)



www.manaraa.com

504 T. Le Reun, B. Favier and M. Le Bars

where ϑ is the scalar fluctuation around the background stratification. As it will be
pointed out later, it is required to include a temporal dependence in the stratification to
account for periodic stretching induced by the background base flow defined in (2.2)
and illustrated in figure 2.

The buoyancy effects are first introduced in (2.7), in the Boussinesq approximation,
via the volume effective gravitational force ρ0(g − ∂tUb(X0))(1 − α(T − T0)) where
α is an isobaric thermal expansion coefficient. As we assume the basic state to be
barotropic, the term ρ0(g − ∂tUb(X0))(1 − αS · x) can be absorbed in a modified
pressure Π . Including buoyancy effects, equation (2.7) now reads:

∂tu+ A(t)x · ∇u+ A(t)u+ u · ∇u=−∇Π − α[g− ∂tUb(X0)]ϑ + ν∇
2u. (2.11)

Note that the field u also satisfies the incompressibility condition ∇ · u= 0.
Two possible instability sources are worth considering. On the right-hand side

of (2.11), the Lagrangian advection of the studied patch translates into an effective
gravity with varying intensity. Such a forcing has already been shown to parametrically
excite internal waves with a growth rate proportional to the oscillating acceleration
amplitude (McEwan & Robinson 1975; Benielli & Sommeria 1998). The base flow
is also coupled on the left-hand side to the velocity perturbation; in the analogue
context of rotating flows, the induced tidal stretching and shearing is well known for
triggering parametric excitation of a pair of inertial waves. This instability mechanism
has also been studied in the context of strained vortices with a stratification aligned
with the background vorticity (Miyazaki & Fukumoto 1992; Kerswell 1993; Miyazaki
1993; McWilliams & Yavneh 1998; Aspden & Vanneste 2009; Guimbard et al. 2010).
Whether a similar stirring mechanism occurs in purely stratified fluids, i.e. with no
background vorticity, has never been investigated to the best of our knowledge. In
this paper, we propose to drop the gravity-driven parametric excitation to focus on
tidal stretching and shearing effects.

To support this approximation, we suggest comparing the order of magnitude of
the expected growth rate of both instabilities. In the case of excitation by gravity
variations, the amplitude of the forcing is proportional to the acceleration of a
Lagrangian particle during an epicycle: β`γ 2. Following Benielli & Sommeria (1998),
the corresponding growth rate σg should scale like σg ∼ γ (β`γ

2)/g where g is the
mean intensity of gravity. On the other hand, if the coupling between the base flow
and the velocity perturbation acts as in the elliptical instability in rotating fluids,
the growth rate σe should then scale like σe ∼ βγ (see equation (4) in Barker &
Lithwick (2013)). As a consequence, σe/σg ∼ g/(`γ 2). As γ is at most comparable
to the spin rate of the considered planetary body, this ratio equivalently compares the
self-gravity of the body to the centrifugal acceleration. It should then always be large
to ensure self-cohesion. For instance, for the Moon–Earth system, γ = 2π/(1day); at
the core–mantle boundary `∼ 3× 103 km and g∼ 10 m s−2. The ratio σe/σg is about
3× 102 at the core–mantle boundary and 1.5× 102 at the surface of the Earth, which
justifies dropping the varying gravity forcing term. Note however that in the case
of a confined layer above a non-deformable core, the elliptical base flow, which is
then no longer described by (2.2), would create large-amplitude lateral flows whose
contribution to the effective gravity would not necessarily be negligible. Although of
interest for instance for the Earth’s oceans, we do not consider the latter case here
to focus on a fully deformable object.
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FIGURE 3. (a) Schematic picture linking stratification seen from a global and a local view.
The angle s between stratification and (OZ) is then a proxy for the latitude at which the
patch is located. Note that the local axes (Mxyz) are in translation around the Z axis.
(b) Time evolution of the x and y components of the stratification. Note that the slow
rotation of S is due to the translative motion of the Lagrangian particle around Z.

2.5. The buoyancy equation and time dependence of stratification
The Navier–Stokes equation (2.11) is coupled to the advection–diffusion equation for
the scalar T:

∂tT + (A(t)x+ u) · ∇T = κ∇2T, (2.12)

where κ is a diffusivity coefficient assumed to be constant. Plugging the assumption
(2.10) in (2.12) leads to the following modified advection–diffusion equation:

dS
dt
· x+

∂ϑ

∂t
+ A(t)x · S+ A(t)x · ∇ϑ + S · u+ u · ∇ϑ = κ∇2ϑ. (2.13)

Assuming that in the equilibrium state there is no perturbation, i.e. (u, ϑ) = (0, 0),
compels the time evolution of the stratification vector S(t) to follow:

dS
dt
=−AT(t)S, (2.14)

where AT stands for the transpose of A given in (2.2). The periodic stretching and
shearing induced by the base flow, as represented in figure 2, impacts the local
background density profile. The equation (2.14) can be solved analytically to obtain
that an initial stratification S0 = (S0x, S0y, S0z) evolves in the following way:

S(t)=Rot(−γ t)

 cos($ t) −
1
E

sin($ t) 0
E sin($ t) cos($ t) 0

0 0 1


Sx0

Sy0
Sz0

=Rot(−γ t)R̂(t)S0, (2.15)

where E , Rot(γ t) and $ are the same as defined in (2.8). A typical time evolution of
S(t) is pictured in figure 3. The initial stratification can arbitrarily be set in the (xMz)
plane. It is then fully parameterised by the angle s such that S0= S0(sin s, 0, cos s)=
S0s̃0; it represents the mean latitude at which the tracked patch is located.

Note that to avoid the spontaneous appearance of baroclinic instability, gravity has
to change its direction to stay aligned with the buoyancy gradient. This is consistent
with the fact that the point X0 is following an elliptical streamline (in the bulge
frame) included in an equipotential surface of the total gravitational field including
tidal force and self-gravitation of the unperturbed state; the gravitational field must
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remain perpendicular to streamlines. We arbitrarily choose to keep the gravitational
field amplitude constant throughout time. Calling g the gravity intensity, the final set
of local equations is, in addition to (2.14):

∂u
∂t
+ A(t)x · ∇u+ A(t)u+ u · ∇u=−∇Π + αg

S
‖S‖

ϑ + ν∇2u
∂ϑ

∂t
+ A(t)x · ∇ϑ + u · ∇ϑ =−S(t) · u+ κ∇2ϑ.

 (2.16)

2.6. Conclusion on the equations and the local model

We will consider hereafter a patch of typical size L. Typical time and velocity scales
are then given by 1/γ and Lγ . The initial stratification amplitude S0 can be used
to build a buoyancy scale LS0. With those definitions, the dimensionless dynamics
satisfies:

∂u
∂t
+ A(t)x · ∇u+ A(t)u+ u · ∇u=−∇Π +N2ϑes +

1
Re
∇

2u
∂ϑ

∂t
+ A(t)x · ∇ϑ + u · ∇ϑ =−S̃(t) · u+

1
Pr Re

∇
2ϑ

∇ · u= 0,

 (2.17)

where we have introduced the dimensionless Brunt–Väisälä frequency N such that
N2
= αgS0/γ . Re is the Reynolds number L2γ /ν and Pr is the Prandtl number ν/κ .

S̃(t) and es are defined as follows:

S̃(t)=Rot(−γ t)R̂(t)S0/S0 =Rot(−γ t)R̂(t)s̃0 and es = S̃(t)/‖S̃(t)‖. (2.18)

This set of equations is particularly convenient as it reduces a global problem
with a non-trivial ellipsoidal geometry to a local one in Cartesian coordinates with
uniform stratification. It retains all the key ingredients to understand the homogeneous
dynamics of tidally forced flows in stratified layers while avoiding to account for
boundary layers.

2.7. The local model in the orbital frame

The same analysis can be performed in the orbital frame tracking the elliptical
deformation rotation at rate nez. The set of equations obtained is very similar
to (2.17) except that A(t) must be replaced by the matrix B defined in (2.1)
and a Coriolis acceleration 2nez × u must be added to the left-hand side of the
momentum conservation. In addition, the time evolution of the stratification vector
reads S̃(t) = R̂(t)s̃0 where R̂ has been introduced in (2.15). The two frames of
reference are equivalent; nevertheless we prefer the planetary frame as it allows us to
introduce planetary rotation with the more intuitive addition of a Coriolis acceleration.
In the non-stratified case, this frame allows us to clearly identify the inertial waves
frequencies (Barker & Lithwick 2013; Le Reun et al. 2017). We have therefore
considered the model in this frame to facilitate future works concerned with the
interplay between rotation and stratification.
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2.8. Direct numerical simulations in a shearing box
The dynamics of the perturbations u to the equilibrium state can be simulated via a
decomposition of {u, Π, ϑ} into Kelvin modes such that:

{u, Π, ϑ} =
∑

k

{
ûk(t), Π̂k(t), ϑ̂k(t)

}
eik(t). x. (2.19)

In close analogy to the model developed in § 2.5 where stratification is found to
be time dependent, evolving the wave vectors k accounts for the periodic shearing
induced by the base flow Ub. For all k, the equations (2.17) are equivalent to:

dk
dt
=−AT(t)k=−A(t) k

dûk

dt
=−A(t)ûk − ikΠ̂k +N2ϑ̂kes −

k2

Re
ûk − ̂(u · ∇u)k

dϑ̂k

dt
=−S̃(t) · ûk −

k2

Re Pr
ûk − ̂(u · ∇ϑ)k.


(2.20)

A similar derivation was first carried out by Barker & Lithwick (2013) to study
the tidally driven elliptical instability in rotating non-stratified fluids. Note that
the time evolution of k(t) is the same as that of the stratification (2.14). This
shearing box development allows us to simulate the perturbations to the base flow
with efficient pseudo-spectral methods, as originally devised by Rogallo (1981), for
instance implemented in the SNOOPY code initiated by Lesur & Longaretti (2005)
that we use here. Apart from the time evolution of the wave vectors which is known
analytically, the code solves the equations (2.20) with a fourth-order Runge–Kutta
method and applying a 2/3-rule for dealiasing the nonlinear terms.

3. Stability analysis
3.1. Direct numerical simulations

We first investigate the stability of the elliptical base flow by performing direct
numerical simulations of the full problem, including viscosity and nonlinearities. This
is done with the SNOOPY code mentioned in § 2.8 which solves the equations (2.20).
The Reynolds number Re is usually set between 106 and 107 while the Prandtl number
Pr is kept constant at 1. The resolution used is up to 96 modes in each direction in
a square box of size L which is used as a length scale. The simulations are initiated
by a broadband noise with k/(2π) ranging from 4 to 20. The time evolution of the
volume-averaged kinetic energy of the fluctuations is tracked until an exponential
phase is reached from which a growth rate is derived.

3.2. WKB and Floquet analysis
Along with solving the full problem, we examine the linear inviscid limit of (2.17)
via a Wentzel–Kramers–Brillouin analysis (Lifschitz & Hameiri 1991). It is easier
to perform the stability analysis in the orbital frame, following the rotation of the
elliptical deformation, where the base flow matrix B does not depend on time (see
§ 2.7 for the corresponding change in (2.17)) .

We then assume that the velocity, pressure and buoyancy fluctuations around the
equilibrium state may be written as follows:

{u, Π, ϑ} = {a, p, Θ} ei(φ(x,t)/η), (3.1)
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FIGURE 4. Schematic diagram defining the relevant angles to describe the relative position
between initial stratification s̃0 and wave vector K0. The angle between s̃0 and the axis z
is s defined in figure 3.

where η is a small parameter accounting for the quick wave-like spatial variations of
the phase φ compared to the secular evolution of amplitudes a, p and Θ .

Plugging the assumption (3.1) into (2.17) in the linear inviscid limit and performing
a series expansion in η leads to the following set of equations (Lifschitz & Hameiri
1991):

K=∇φ
dK
dt
=−BTK

da
dt
=

(
2
KKT

K2 − I

)
Ba− 2

(
KKT

K2 − I

)
(ez × a)−N2

(
KKT

K2 − I

)
Θes

dΘ
dt
=−S̃(t) · a.


(3.2)

The equation on K can be solved analytically: it follows the same time evolution as
S̃(t), K= R̂(t)K0 where R̂(t) has been defined in the time evolution of stratification
(2.15) and K0 is an initial condition vector.

At the lowest order (β = 0), the linear operators B and ez × · are equal. Since the
shearing and stretching effects are entirely due to the ellipticity of streamlines, the
stratification S̃ and wave vector K have a purely rotating motion at rate γ . Taking the
time derivative of the last equation in (3.2) gives a second-order differential equation:

d2Θ

dt2
−N2

(
(s̃0 ·K0)

2

K2
0

− 1
)
Θ = 0, (3.3)

where s̃0 is the unit vector defining the initial stratification direction, as defined in
(2.18). It is then convenient to introduce ξ , the angle between the initial stratification
and wave vector as represented in figure 4. Θ , and consequently the velocity
component sensitive to the stratification a · S̃, oscillate at a frequency λ = ±N sin ξ .
At the lowest order, the internal wave dispersion relation is retrieved.

To further analyse the linear growth of the instability and to obtain quantitative
growth rates, we perform the Floquet analysis of the system (3.2) (Bender & Orszag
1978). This can be done since the vectors K, S̃ and es all oscillate at the same
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FIGURE 5. Map of the growth rate computed via the Floquet theory σ̃f as a function
of the ellipticity β and the angle ξ defined in figure 4 and (3.5) for (a) N = 1.5 and
s= 90◦ and (b) N= 4 and s= 90◦. As will be shown hereafter, the growth rate is linearly
growing with the ellipticity. We therefore normalise the growth rate by β which allows
us to identify the limits of the Floquet resonance tongue. The latter converges towards
N sin ξ = γ = 1 for β → 0 showing that the resonance is subharmonic. Note that the
higher growth rate area is always above the dashed line N sin ξ = 1.

frequency $ , defined in (2.9a,b). The linear operator on the right-hand side of (3.2)
therefore oscillates with a period 2π/$ . Knowing the time evolution of K, we solve
the differential equations over the vector (a, θ) from t=0 to t=T=2π/$ . The initial
condition is the identity matrix I . The final value (a(T), θ(T)) for each initial condition
corresponds to a monodromy matrix Φ and the growth rate σ of the instability is then
related to its eigenvalues µi such that (Bender & Orszag 1978; Cébron, Vantieghem
& Herreman 2014):

σ =
$

2π
max{lnµi} or σ̃ =$ max{lnµi}, (3.4a,b)

where ·̃ refers to a growth computed per tidal cycles. As the resonant wave vector is a
priori unknown, the Floquet analysis is performed for different K0. This initial wave
vector is parameterised by its norm K0 (which does not play any role in the inviscid
limit), the angles s, ξ and α represented in figure 4, such that:

K0 =K0

 sin ξ cos α cos s+ sin s cos ξ
sin ξ sin α

− sin ξ cos α sin s+ cos s cos ξ

 . (3.5)

Such a parameterisation merely comes from the expression of K0 in the spherical
coordinates (α, ξ) with a polar axis (M, s̃0) (see figure 4). With s used as a control
parameter, resonance is found exploring the values of σ̃ in the (ξ , α) space.

The range of angles ξ to explore is non-trivial. We show in figure 5 the maximum
(respectively to α) growth rate computed with the Floquet theory as a function of ξ
and β. The non-zero growth rate area delimits Floquet tongues which stretch towards
N sin ξ = γ = 1 as β goes to 0. The resonant waves are therefore parametrically
excited close to half the frequency of the forcing flow. Note however that the Floquet
tongues are not symmetric around N sin ξ = 1: the areas with maximum growth rates
are always slightly above this line. As a consequence, to compute the theoretical
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FIGURE 6. (Colour online) Growth of the instability for β = 5 × 10−2, N = 1.5 and
s = 90◦ initiated from broadband white noise with k/(2π) in three different intervals,
1: [5, 10], 2: [10, 14] and 3: [14, 20]. The viscous growth rate is obtained by a linear
fitting in log–linear coordinates (shown as dash-dotted lines). The corresponding snapshot
of the buoyancy perturbation field is given for each experiment with an indication of the
stratification direction. It is used to determine the growing mode.

maximum growth rate, we explore a range of angle ξ around arcsin(1/N) with a
tolerance of order β.

Note that the theoretical growth rate could also have been analytically computed via
a multi-scale analysis where βt is the slow time. This would have given the asymptotic
resonant values of α for β→ 0. However, the complexity of the first-order operator
respective to β is such that the problem might be intractable. This might be due to the
low degree of symmetry as the angle between the orbital plane and the stratification
axis is arbitrary.

3.3. Comparison between direct numerical simulations and linear stability analysis
We perform direct numerical simulations (DNSs) setting β = 0.05, N = 1.5, s = 90◦
with a Reynolds number Re= 106.5. A first try was initiated from a broadband white
noise with k/(2π) ∈ [4, 20]. The kinetic energy displays an exponential growth but
snapshots reveal several entangled growing modes. To better quantify the growth rate
and modes selection, we then restrict the broadband noise to three intervals 1 [5, 10],
2 [10,14] and 3 [14,20] which allows us to isolate growing modes with approximately
the same wavelength. The kinetic energy corresponding to these three initial conditions
is shown in figure 6 with snapshots of the buoyancy perturbation field ϑ during the
exponential growth phase. In each case, the kinetic energy is exponentially growing
and the buoyancy field bears a plane wave structure, confirming that the instability
mechanism is based on wave resonance. These DNS results allow us to calculate the
viscous growth rate σ̃v in tidal units. The inviscid growth rate σ̃th (expressed in tidal
cycles) is then obtained by subtracting the viscous damping of the growing mode, i.e.
σ̃th = σ̃v + 2πk2Re−1 with k the wavenumber of the mode (as σ̃th is in tidal units, a
2π factor must be added to the damping rate).

These results are then compared to the theoretical inviscid growth rate σ̃f given by
the Floquet analysis of equations (3.2). The map of σf (α, ξ) is displayed in figure 7
where the location of the growing mode for each DNS is highlighted by a black dot
associated with the corresponding σ̃f . We first note that, both in DNS and theory, the
angle ξ satisfies the condition N sin ξ = 1 with a tolerance smaller than β, as it was
expected from qualitative arguments developed in the preceding paragraph. In addition,
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FIGURE 7. (Colour online) (a) Map of the growth rate σ̃f computed with the Floquet
analysis as a function of the angles ξ and α. The black dots correspond to the location
of the growing modes observed in figure 6 for which the theoretical σ̃f growth rate is
given. The dashed black lines highlight the marginal stability. (b) Comparison between
systematic calculation of the maximum growth rate from the Floquet analysis and DNS
results. The growth rates σ̃f computed with Floquet theory are all aligned on σ̃f = 1.65β.

the theoretical growth rate σ̃f is close to the growth rate σ̃th measured in DNS with a
relative difference less than 2 %. With this very good agreement between DNS and the
linear theory, we can now analyse the dependence of the growth rate on the control
parameters using rapid linear theory only.

3.4. Linearity with the ellipticity β
The amplitude of the periodic stretching and shearing responsible for the parametric
excitation of internal waves is proportional to the ellipticity β. Another way to
validate the DNS and the linear stability analysis is to examine the consequent
expected linearity in β of the growth rate as in the case of tidally driven elliptical
instability (Le Dizès 2000; Kerswell 2002; Grannan et al. 2017). As shown in
figure 7(b), the theoretical maximal growth rate σ̃f inferred from Floquet theory is
very well described by a linear function over several orders of magnitude, in the case
with N = 1.5 and s= 90◦. The growth rate computed from DNS is in addition very
close to this theoretical line.

3.5. Dependence on the stratification angle s
To illustrate the dependence on the latitude or equivalently the stratification angle s
(see figures 3 and 4), we show in figure 8 the maximum theoretical growth rate of
the instability for fixed N = 1.5. The main conclusion is that this instability can be
triggered at any latitude in a planetary fluid layer. For this Brunt–Väisälä frequency,
the growth is optimal between roughly 50◦ and 60◦. The mode selection of the
parametric instability changes with latitude. Unlike the mode selected in the case
N = 1.5 and s= 90◦ where α ' π/2 (see figure 7), the mode selected at s= 60◦ lies
in the plane (xMz), i.e. α 'π (see figure 4).

3.6. Dependence on the Brunt–Väisälä frequency N
The growth rate of the instability is also a function of the Brunt–Väisälä frequency. As
shown in figure 9, it tends to a limit value when N� 1. The consequence is that the
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FIGURE 8. (Colour online) (a) Theoretical and numerical growth rates with β = 5× 10−2

and N = 1.5 varying the stratification angle s. (b) Corresponding map of the growth rate
σ̃f computed with Floquet theory for the case s= 60◦. The black dashed lines highlight
the marginal stability.
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FIGURE 9. (Colour online) (a) Evolution of the maximum growth rate for β = 5× 10−2

at three different stratification angles; a few DNSs have been carried out to confirm the
agreement between theory and numerics. (b) Map of the growth rate computed from the
Floquet analysis in the case N = 4 with s = 90◦. The black dashed lines highlight the
marginal stability.

instability can be triggered at any Brunt–Väisälä frequency provided that it is larger
than 1 in tidal units. Note that for large N, the selected modes’ wave vectors draw
closer to the stratification direction as sin ξ ∼ 1/N.

3.7. Conclusion
The linear stability analysis examined theoretically via WKB analysis and Floquet
theory is quantitatively consistent with the results of direct numerical simulations.
This first study has two consequences. It allows us to assert that provided the
dissipation is low enough, a parametric excitation of internal waves can be excited in
a planetary fluid layer undergoing homogeneous tidal deformations. This instability
can be triggered at any latitude. However, the mode selection seems difficult to
predict as it depends on latitude. At least it is confirmed that the growing waves
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Input variables Output variables

Resolution N log(Re) s kres/(2π) urms (×10−3) Fr εk (×10−8) Reo R
2563 1.5 6.0 45◦ 12.0 4± 1 0.032 5± 3 332 0.35
2563 1.5 6.5 45◦ 12.0 4.8± 0.4 0.039 3± 1 1279 2.0
2563 1.5 6.75 45◦ 12.0 4.4± 0.4 0.035 2.1± 0.7 2049 2.6
5123 1.5 7.0 45◦ 12.0 4.4± 0.3 0.035 1.8± 0.1 3673 4.7
2563 1.5 6.5 0◦ 5.4 3.7± 0.7 0.030 1.3± 0.6 980 0.9
2563 1.5 6.5 90◦ 11.2 5.9± 0.6 0.047 4± 1 1550 3.6
2563 2.0 6.5 90◦ 5.8 5.4± 0.5 0.016 3± 1 2950 0.74
2563 4.0 6.5 90◦ 14.6 2.3± 0.9 0.008 1 500 0.03
2563 4.0 7.0 90◦ 14.6 3.3± 0.5 0.012 1.5± 0.2 720 0.10

TABLE 1. Input parameters and measured statistical properties of the flow for each
simulation. kres is the principal wavenumber of the resonant modes emerging during the
growth phase. urms is the root-mean-square (r.m.s.) velocity computed from the mean of
the kinetic energy. The Froude number Fr is computed as urms/(Nλres). εk is the saturation
dissipation rate defined as −Re−1

〈
∂iuj∂iuj

〉
summed over the whole box. The output

Reynolds Reo number and the buoyancy Reynolds number R are respectively defined
in (4.3) and (4.4). When error bars are given, they correspond to the variance of the
quantity over the total duration of the saturation phase. Note that N = 4 and Re= 106.5 is
intermittently turbulent and the Reynolds number had to be pushed up to 107 to observe
a sustained turbulence.

are selected because their frequencies are close to half the forcing frequency 2γ . In
addition, this first linear study validates the use of local direct numerical simulations
under a shearing box approximation with time-varying wave vectors, as this method
is in excellent agreement with the linear WKB-Floquet theory.

4. Nonlinear saturation of the instability
To further analyse this tidally driven instability of internal waves, we now focus

on its nonlinear saturation. This regime is the most relevant to the understanding of
natural systems, in particular to comprehend the dissipation rate of the input tidal
energy and the turbulent mixing in the oceans, or to study the possible existence of
dynamo action in stably stratified planetary cores. Although we cannot address here
all those issues, we strive to exhibit the key features of the nonlinear saturation of
this tidally driven instability as a basis for future works.

We performed many simulations, all with an ellipticity β = 5× 10−2, to explore the
influence of the Reynolds number Re, the Brunt–Väisälä frequency N, and the latitude
or stratification angle s in the low forcing intensity and low dissipation regime relevant
to geophysics. The Prandtl (or Schmidt) number Pr is kept constant at Pr= 1. These
simulations are all summed up in table 1 where the input parameters are referenced
along with the main output statistical quantities.

4.1. Sustained instability and turbulence
As in the linear stability analysis, the nonlinear fate of the instability is mainly tracked
via the time evolution of the total kinetic energy in the Lagrangian box. Figure 10
shows that once the instability has reached saturation, the kinetic energy is maintained
throughout time for the considered parameters. As indicated by figure 10, changing
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FIGURE 10. (a,b) Time evolution of the kinetic energy and the dissipation εk when Re
is varied while keeping constant s = 45◦ and N = 1.5. The time is normalised by the
theoretical growth rate σ = σ̃f . (c,d) Corresponding power spectra of the velocity E(k)
and of the buoyancy Eθ (k); they are averaged for σ̃ t ∈ [150, 400]. The black solid line
materialises a k−3 power law. The dash-dotted spectra are computed during the growth
phase to show that the energy is primarily injected in a narrow band of wavenumbers
through the instability mechanism.

the Reynolds number from 106 to 107 does not influence the time-averaged value of
the kinetic energy provided that N and s are kept constant. We note however that
the variations around the mean energy level are larger for the lowest values of the
Reynolds number. This is reminiscent of cyclic resonance and turbulence breakdown
often occurring in systems close to the instability threshold. It has been observed for
instance for the elliptical instability in rotating fluids (Grannan et al. 2014; Favier
et al. 2015) or in the case of parametrically excited internal waves in a Faraday
instability set-up (Benielli & Sommeria 1998).

To examine whether the saturation flow is influenced by stratification, we compute
the Froude number based on the resonant wavelength and the r.m.s. velocity. The
resonant wavelength λres = 2π/kres is an output parameter resulting from the mode
selection during the growth phase (see table 1), and the r.m.s. value of the velocity in
the saturated phase is computed from the saturation time average of the kinetic energy
Ek such that urms =

√
2Ek. The Froude number Fr is therefore defined as

Fr=
urms

λresN
. (4.1)

The values of urms and Fr are all referenced in table 1. As Fr =O(10−2) for all the
simulated configurations, we conclude that the background stable stratification strongly
affects the saturated flow.
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FIGURE 11. (a,b) Power spectra of the velocity E(k) and of the buoyancy Eθ (k) for s ∈
{0◦, 45◦, 90◦} at Re= 106.5 and N = 1.5. (c,d) The same quantities for s= 90◦ with N ∈
{1.5, 2, 4}. The Reynolds number is 106.5 except for N = 4 where it had to be increased
to 107 to observe sustained turbulence.

In addition, the saturation of the instability is associated with the spontaneous
creation of small scales. The isotropic power spectrum of both velocity (E(k)) and
buoyancy (Eθ(k)) are shown in figures 10 and 11. They are computed as:

E(k)=
∑

k6|k|<k+1

|ûk|
2 and Eθ(k)=

∑
k6|k|<k+1

|ϑ̂k|
2. (4.2a,b)

In the high Reynolds number limit, they converge towards a k−3 power spectrum,
independently of N and s. Note that a similar velocity power spectrum has been
observed by Brouzet (2016) in the close context of turbulence driven by a forced
internal wave attractor. It has also been measured at low Froude number by Rorai,
Mininni & Pouquet (2015) in a stratified turbulence randomly forced at large scale.
From the excitation of a few unstable internal waves, this instability mechanism
manages to create sustained stratified turbulence and smaller scales. In addition, the
apparent equipartition between velocity and buoyancy power spectra points towards a
dynamics dominated by internal waves.

To better characterise the turbulent flow resulting from the saturation of the
instability, we introduce two dimensionless parameters. We compute an output
Reynolds number Reo based on the r.m.s. velocity and the resonant wavelength
such that:

Reo = Re urms λres. (4.3)

With this output Reynolds number, we can also compute the buoyancy Reynolds
number R defined as (Brethouwer et al. 2007):

R= Reo Fr2. (4.4)
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FIGURE 12. Mean value of the dissipation rate εk as a function of the Reynolds number
for N = 1.5 and s= 45◦. The error bars account for the standard deviation of εk during
the saturation phase.

It compares a scale `b beyond which buoyancy effects are negligible and a scale
`v beyond which viscosity affects the flow (Godoy-Diana, Chomaz & Billant 2004;
Brethouwer et al. 2007). For instance, in the context of classical stratified turbulence,
it compares the so-called Ozmidov and the Kolmogorov length scales (Brethouwer
et al. 2007). The output Reynolds number is O(100–1000) but because the Froude
number is small, the buoyancy Reynolds number is at most O(1) (see table 1). This
means that although the flow is turbulent, there is no significant range of scales
where inertia dominates over buoyancy: all the non-dissipative scales are affected
by the background stratification. This is drastically different from recent studies on
forced stratified turbulence, which are mostly focused on the R� 1 regime (see for
instance Brethouwer et al. (2007), Bartello & Tobias (2013), Maffioli, Brethouwer &
Lindborg (2016), Maffioli & Davidson (2016)). Lastly, the instantaneous dissipation
rate associated with this type of turbulence is shown in figure 10 and its mean
saturation value is given in table 1. They are computed in our dimensionless units as
εk=−Re−1

〈
∂iuj∂iuj

〉
> 0 where 〈·〉 is a volume-averaging operator. Figure 12 sums up

the evolution of this dissipation with the Reynolds number at constant N and s. The
dissipation rate εk is a decreasing function of the Reynolds number in the considered
range of parameters and this decay is shallower than a Re−1 decrease. This is an
additional signature of the development of turbulence as it indicates that the velocity
gradients become steeper as the input Reynolds number is decreased. However, in the
present range of parameters accessible with reasonable computing time, no saturation
of εk at high Re is reached.

As a conclusion, at large Reynolds number, the flow resulting from the saturation of
this tidally driven instability is developing over a wide range of spatial scales from an
initial resonance dominated by a most unstable wavelength. At a given Brunt–Väisälä
frequency, this turbulence develops at any latitude. Typical snapshots of this turbulent
state can be found in figure 13.

4.2. Internal wave turbulence
In this paragraph, we aim at thoroughly characterising the structures generated by the
nonlinear saturation of the initially unstable waves. In simulations and experiments of
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FIGURE 13. (Colour online) Typical snapshots of the buoyancy field (a,c) and the y
component of the vorticity (b,d) in the saturated phase for a,b: N = 1.5, s = 45◦ and
Re= 107; c,d: N = 4, s= 90◦ and Re= 107.

stratified turbulence, the emergence of layerwise structures in which the flow is quasi-
two-dimensional is frequently observed. These so-called ‘pancakes modes’ correspond
to the quasi-static limit of the internal waves dynamics (i.e. ξ → 0 and ω → 0);
three-dimensional motion comes through shear instability between those layers (see
e.g. Billant & Chomaz (2001), Brethouwer et al. (2007)). Conversely, the turbulence
excited by internal wave attractors leads to a different situation where the turbulence
is a cascade of triadic resonances between the excited waves and a swarm of daughter
waves. It results in an internal wave turbulence (Brouzet et al. 2016).

To determine which scenario is relevant here, we propose to map the energy in
the same representation as Yarom & Sharon (2014), Brouzet et al. (2016) and Le
Reun et al. (2017), i.e. to project the energy in the spectral space along the temporal
frequency ω and the angle ξ between the stratification direction S̃ and the wave
vector of a mode. This allows us to determine where the energy is located around
the dispersion relation of internal waves. This energy map is in the present case
straightforward to draw thanks to the spectral nature of our simulations. The flow is
indeed known through the velocity in spectral space ûk(t). They can be sorted by
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for Re= 106, 106.5 and 107 at N = 1.5 and s= 45◦ kept constant. The Fourier transforms
are performed for σ̃ t ∈ [200, 400] and the energy is normalised by its maximum value.
The range of wavenumber k over which the transform is processed goes from k = 3 to
k= 100; changing these boundaries does not affect the map provided the most energetic
scales (k . 20) are included. The dotted horizontal line represents the frequency of the
first excited modes, the plain line gives the dispersion relation of the internal waves ω=
N sin ξ and the dashed line locates the modes due to non-resonant nonlinear interactions
between the tidal basic flow and the internal waves resulting in frequencies 2 − N sin ξ .
The SNOOPY code computes the time evolution of half the spectral space as the fields are
real, the angle ξ is therefore between 0 and π−π/4= 3π/4.

their angles ξ to obtain the quantity û(ξ , t) defined as:

û(ξ0, t)=
∑

k,α,ξ̃∈[ξ0,ξ0+1ξ ]

ûk(t) with k= k

 sin ξ cos α cos s+ sin s cos ξ
sin ξ sin α

−sin ξ cos α sin s+ cos s cos ξ

 , (4.5a,b)

where α is an azimuthal angle, ξ is a polar angle respective to the stratification axis
as defined in figure 4 and k is the norm of the wave vector k. 1ξ is a given tolerance
to assume the angle ξ of a mode is equal to ξ0. A time Fourier transform is applied
to û(ξ , t) to finally get û(ξ , ω). With these definitions, we remind at this point that
the dispersion relation of internal waves at a given k(k, ξ , α) is ω2

=N2 sin2 ξ .
The result of such a process is shown in figures 14 and 15. The most striking

feature is the coincidence between the main energy locations and the dispersion
relation of internal waves, similarly to Yarom & Sharon (2014) and Le Reun
et al. (2017) in rotating fluids, also Brouzet et al. (2016) in stratified fluids and to
Aubourg & Mordant (2015) in the case of gravity–capillary waves. It confirms that,
in the saturation phase, the nonlinear interactions between the growing modes give
rise to a cascade of daughter internal waves. In figure 14, it can be noticed at low
Reynolds number that only a few modes emerge in the nonlinear saturation. Increasing
the Reynolds number leads to filling continuously the dispersion relation. Note that as
energy is injected into the resonant modes only and as the Froude number is always
small, the only way to create new waves is via a cascade of triadic resonances.

Secondary locations of the energy mirroring the dispersion relation of internal
waves can be noticed in figures 14 and 15. Their frequencies match the relation
ω = 2 − N sin ξ and are therefore associated with nonlinear and non-resonant



www.manaraa.com

Wave turbulence driven by tidal excitation of internal waves 519
Fr

eq
ue

nc
y 1.5

1.0

0.5

2

1

0 0

4

2

0

100

10−1

10−2

10−3

10−4

10−5

FIGURE 15. (Colour online) Map of the kinetic energy as a function of the frequency of
the modes and the angle ξ for N= 1.5, 2 and 4 with s= 90◦. The Reynolds number is 106

except for N = 4 for which it was increased to Re= 107 to observe sustained turbulence.
The Fourier transforms are performed for σ̃ t ∈ [150, 400] and the energy is normalised by
the maximum value. Again, secondary and mirroring locations of the energy corresponding
to non-resonant and nonlinear interaction of the waves and the base flow can be noticed.
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FIGURE 16. Temporal spectrum resulting from the acquisition of 1024 local velocity
signals of all three components. The plain vertical line marks the upper boundary
of internal waves and the dashed vertical line highlights the excitation frequency.
(a) Temporal spectrum for N = 1.5, s = 45◦ and Re = 107. (b) Temporal spectrum for
N = 4, s = 90◦ and Re = 107. The inset shows the same amplitude compensated by ω2

with ω the frequency to highlight a ω−2 power law consistent with the high-frequency
branch of the Garrett and Munk spectrum (Garrett & Munk 1979).

interactions between the waves of frequency ±N sin ξ and the base flow of frequency
±2.

The filling of the dispersion relation depends however on the Brunt–Väisälä
frequency (figure 15). When N is increased, modes with frequency around or below
γ seem to be more excited via nonlinear interactions than modes with frequency
between γ and N, at least for the Reynolds numbers considered here (see N = 4 in
figure 15).

In order to quantify more precisely how frequencies are excited, we propose
to focus on temporal spectra obtained via the local acquisition of the three
components of the velocity at several points. As shown in figure 16, and as expected
theoretically for an internal wave turbulence, there are no significant fluctuations
beyond the Brunt–Väisälä frequency N. Below this frequency the excited modes
are homogeneously distributed down to frequencies which are an order of magnitude
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FIGURE 17. Kinetic energy spectrum of the layerwise slow modes defined by ξ = 0 and
the rest of the flow for (a) N = 1.5, Re= 106.5 and (b) N = 4, Re= 107 at s= 90◦.

smaller than both N and γ (see figure 16a). These frequencies correspond to the lower
branch (i.e. small ξ ) of the dispersion relation observed in figures 14 and 15. When
N is increased, i.e. when a scale separation appears between the forcing frequency
γ and N, the energy contained in the higher frequencies (N sin ξ > 1) follows a ω−2

power law. Such a trend is reminiscent of oceanographic measurements of the velocity
which display a similar ω−2 power law in the range of frequencies above the tidal
forcing and which is interpreted as a signature of internal wave turbulence (Garrett &
Munk 1972, 1975, 1979; Levine 2002). To provide a definitive comparison, it would
be necessary to increase N while keeping a turbulent saturation, which requires large
computational time as the Reynolds number must also be increased.

As a conclusion, the tidally driven parametric instability of internal waves saturates
in a state reminiscent of ‘internal wave turbulence’. The sustained, broadband
frequency and small-scale saturation flow is composed of nonlinearly interacting
internal waves, although the nonlinearity is weak compared to the effects of the
background stratification.

4.3. Anisotropy and decoupling

Stratified turbulence has often been studied in the perspective of the emergence of
layerwise, low-frequency structures, leading to a strong anisotropy and decoupling
between horizontal and vertical variations. This paragraph aims at comparing the
internal wave turbulence previously identified to the classical theories of stratified
turbulence in the high buoyancy Reynolds number regime developed in particular by
Billant & Chomaz (2001), Lindborg (2006) and Brethouwer et al. (2007).

First, figures 14 and 15 do not indicate any energy accumulation in the layerwise
structures around ξ = 0 and ω = 0. To support this assertion, we show in figure 17
the kinetic energy spectrum for the layerwise modes at ξ = 0 and for the rest of the
flow. As in the two cases the stratification is along the x axis, the layerwise modes
are easily identified in the spectral space as their wavenumber k is such that kz, ky= 0.
As it can be noticed, at all scales, the slow modes are subdominant. This could be
confusing as layers perpendicular to the stratification can be noticed in figure 13, they
however do not correspond to slow modes since they are not exactly invariant along
the axes perpendicular to the stratification.
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FIGURE 18. Anisotropic velocity power spectra as functions of k⊥ and k‖ for (a) N= 1.5,
Re= 106.5 and s= 45◦ and (b) N = 4, Re= 107 and s= 90◦. On each plot, the black solid
line shows a k−3 power law for comparison.

Although layerwise structures are ubiquitous in stratified turbulence excited by
a random forcing or by large-scale vortices, forcing waves leads to a completely
different state with low energy transfers towards those particular modes. The present
picture is reversed in the close context of rotating turbulence excited by inertial
waves: geostrophic vortices happen to grow to take over the whole dynamics in
the absence of specific dissipative process and to strongly back-react on wave
propagation (Barker & Lithwick 2013; Le Reun et al. 2017). This could be linked
to the fundamental mathematical difference between layerwise modes in stratified
turbulence and geostrophic vortices in rotating turbulence (Cambon 2001), which
leads in particular to the absence of inverse cascade in the purely stratified case
(Marino et al. 2013; Herbert et al. 2016).

This result regarding slow modes has strong implications in the anisotropy of the
turbulent flow. In the classical theory of stratified turbulence, the velocity power
spectrum is an anisotropic function of k⊥ = k sin ξ and k‖ = k cos ξ . The velocity
power spectrum integrated over k‖, i.e. along the stratification axis, E(k⊥), follows
a Kolmogorov-like power law k−5/3

⊥ , while conversely E(k‖) ∝ k−3
‖ (Lindborg 2006;

Brethouwer et al. 2007). However, in the case of the internal wave turbulence
presented above, both spectra E(k⊥) and E(k‖) follow the same power law close to
k−3
‖,⊥, as it can be seen in figure 18. The situation is even reversed as E(k⊥) is slightly

below E(k‖) at large k while it is expected to be dominant in classical stratified
turbulence. This result shows that there is no decoupling between the horizontal and
vertical variations, as observed in the frequently studied high buoyancy Reynolds
number regime, which is coherent with the fact that the turbulent state considered
here is a superposition of many internal waves propagating in multiple directions in
a quasi-isotropic manner.

The spectra displayed in figure 18 suggest that the gradients in the direction
perpendicular to the stratification are less steep than they should be if the turbulence
was due to shear instability between layerwise modes. To investigate whether shear
instabilities are possible in the saturated flow, we compute the local Richardson
number defined as:

Ri(x, t)=
N2

(
1+

dϑ
dzs
(x)
)2

(
dv⊥

dzs
(x)
)2 , (4.6)
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FIGURE 19. Probability density function of the Richardson number for s= 45◦ and N =
1.5 with Re ∈

{
106, 106.5, 107

}
. Probability density functions (PDFs) are computed from

snapshots of the buoyancy and velocity fields; the result presented here is the ensemble
average of all the PDFs computed in the saturation phase. The number of samples is
usually between 10 and 20.

where zs is a linear coordinate along the stratification axis and v⊥ is the velocity
component perpendicular to the stratification direction. It compares the local Brunt–
Väisälä frequency, including buoyancy fluctuations, with the shearing rate along the
stratification direction. Linear stability analysis indicates that a sheared stratified flow
is unstable when Ri<Ric= 1/4. Following Brethouwer et al. (2007), we compute for
several Reynolds numbers, at N = 1.5 and s= 45◦, the PDFs of the local Richardson
number. As shown in figure 19, for the two lower input Reynolds numbers, there
is no event likely to create shear instabilities. The buoyancy Reynolds number R
being smaller than one, this is coherent with the remark of Brethouwer et al. (2007)
that in the low buoyancy Reynolds number regime, there should be no disturbances
of Kelvin–Helmholtz type in the flow. The picture seems to change at the highest
Reynolds number (107), which corresponds to our most extreme simulation where rare
events with Ri< 1/4 are observed. The appearance of rare unstable events could be
reminiscent of a transition towards a high buoyancy Reynolds number regime, which
is further discussed in the concluding section of the present paper. Still we conclude
that in the regime we explore in the present paper, the internal wave turbulence is
mostly stable to shear instabilities and is unable to drive strong overturning events.

4.4. Mixing
At this stage, we know that tides are able to amplify buoyancy perturbations over
a background stratification, and that this amplification saturates into an internal
wave turbulence. We would like to quantify then how this turbulent state mixes the
buoyancy perturbations, i.e. how it irreversibly converts potential energy perturbations
into background potential energy (Peltier & Caulfield 2003). Following the work
of Lindborg & Brethouwer (2008), Salehipour & Peltier (2015) and Maffioli et al.
(2016), we propose to quantify the mixing via a coefficient Γ defined as:

Γ =
εp

εk
, (4.7)
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FIGURE 20. (a) Mixing coefficient Γ as defined by Maffioli et al. (2016) as a function
of the input Reynolds number. The limit value in the small Froude regime obtained by
Maffioli et al. (2016) is given as a reference. (b) Evolution of the mixing coefficient with
N for s= 90◦ and Re= 106.5 except at N = 4 where Re= 107.

where εp = −N2(Re Pr)−1
〈
(∇ϑ)2

〉
quantifies the diffusion of the buoyancy

perturbations and εk is the kinetic energy dissipation defined in table 1. This
coefficient Γ was originally introduced to evaluate how turbulence induces an
effective diapycnal diffusivity K = Γ εk/N2 (Osborn 1980; Salehipour et al. 2016).
The expression given for εp can be retrieved by considering that it is a potential
energy dissipation (Lindborg & Brethouwer 2008). In the derivation of the energy
equations from (2.17), the buoyancy equation must be multiplied by N2ϑ to obtain
the same energy transfer from velocity to buoyancy, which finally yields the definition
given earlier to εp.

In their study, Maffioli et al. (2016) found that, forcing a turbulence in a stratified
fluid with vortices aligned with stratification, at low Froude and high buoyancy
Reynolds numbers the mixing coefficient Γ converges towards 0.33. In figure 20(a)
we display the mixing coefficient Γ at N = 1.5 as a function of the input Reynolds
number Re with the limit value found by Maffioli et al. (2016) given as a reference.
Despite the fact that Re is increased from 106 up to 107 we do not observe any
variation of the mixing coefficient. Instead, Γ remains constant around 1, well
above the limit reference value. The evolution of the mixing coefficient Γ with the
Brunt–Väisälä frequency N is also computed for s = 90◦. As it can be noticed in
figure 20(b), again, Γ remains constant and around 1.

This result can be inferred from a very simple model assuming the flow is only
a superposition of low-amplitude internal waves with weak nonlinear interactions. A
single wave of frequency ω and wave vector k, {u, ϑ, Π} = {uk0, ϑk0, Πk0} ei(k·x−ωt)

with ω2
=N2 sin ξ , must obey the following linear inviscid set of equations:{

∂tu = −∇Π +N2ϑes
∂tϑ = −es · u

⇒

{
−iω uk0 = −kΠk0 +N2ϑk0 es
−iω ϑk0 = −es · uk0.

(4.8)

where es is the stratification direction unit vector. We wish then to compute the
volume-averaged dissipation associated with the wave field, which is merely the
sum of each single wave dissipation. For one wave only,

〈
u∗ ·∇2u

〉
=−k2

|uk0|
2 and〈

ϑ∗∇2ϑ
〉
= −k2

|ϑk0|
2. To compute Γ , we need to relate |uk0|

2 to |ϑk0|
2 which can

be done for instance applying k× (k× ·) to the velocity equation in (4.8). We then
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obtain the exact balance |uk0|
2
= N2
|ϑk0|

2 (which does not apply at ω= 0). Thus we
find with the following simple scaling for the mixing coefficient:

Γ =
1

Pr
, (4.9)

where Pr is the Prandtl or Schmidt number. We retrieve for our simulations at Pr= 1
that Γ = 1. The numerical result Γ = 1 should therefore be regarded as an additional
signature of internal wave turbulence.

To conclude, internal wave turbulence offers a picture completely different from
the classical stratified turbulence at high buoyancy Reynolds number. The flow
being a superposition of low- to moderate-amplitude waves, the mixing coefficient
is different compared to a situation where the most energetic structures are the
non-propagative layerwise modes. Note that although the mixing coefficient is
increased, the consequent turbulent diapycnal diffusivity should still be lower than
what is measured in high buoyancy Reynolds number regime, essentially because the
forcing introduced here and the associated dissipation rates are small.

5. Conclusion
Throughout this paper, we have shown with an idealised local Lagrangian model

that tidal flows are able to drive bulk turbulence in stratified planetary fluid layers.
This turbulence is driven by the parametric subharmonic resonance of unstable internal
waves. The latter continuously feeds a cascade of daughter waves to create a flow
which bears signatures of internal wave turbulence, in particular the focus of the
energy along the dispersion relation of internal waves. Such a turbulent flow has
already been characterised in an experimental set-up designed to mimic the effects
of tides on a particular topography (Brouzet et al. 2016). We claim from our results
that internal wave turbulence can take place homogeneously in a whole fluid layer
undergoing tidal distortion, provided that the latter’s amplitude is large enough to
overcome dissipation and that the Brunt–Väisälä frequency N is larger than the tidal
frequency γ .

In addition, our local approach provides an efficient way to numerically investigate
the detailed and possibly universal properties of weakly forced internal wave
turbulence in low dissipation regimes. Despite recent experimental (Brouzet et al.
2016) and theoretical (Gamba, Smith & Tran 2017) advances, this particular state
of stratified turbulence remains challenging and difficult to be compared to the
classical theory of wave turbulence (Zakharov, L’vov & Falkovich 1992; Nazarenko
2011). As in rotating turbulence, this is essentially due to the anisotropy of the
dispersion relation (see for instance the discussion in Brouzet (2016)), the role played
by near-resonant interactions and the nonlinear interaction with non-propagative
modes (Cambon 2001; Galtier 2003; Smith & Lee 2005; Bellet et al. 2006; Scott
2014; Gamba et al. 2017; Gelash, L’vov & Zakharov 2017). Although our model
is introduced in a targeted geophysical context, it could be used to test universal
internal wave turbulence models or closure.

Future work will strive to introduce rotation, which is also a key ingredient to
planetary fluid dynamics. In particular, in the limit where buoyancy effects still
dominate over the Coriolis force, it should be interesting to study the consequence
of its introduction on the filling of the dispersion relation and the subsequent
low-frequency cutoff. As it can be noticed in figure 16, for N = 4, there is an
energy accumulation at frequencies ω ∈ [0.1, 1]. If the rotation rate were to be in this
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range, would the energy accumulate in the lowest-frequency modes, i.e. the layerwise
structures which were never observed to develop in our simulations? If so, tidal flows
would convey energy into modes which could then undergo shear instabilities and
therefore drive more intense turbulence with enhanced dissipation rate and mixing.
Whether this turbulence is sustained or lead to the temporary inhibition of the
instability which feeds it remains to be seen.

Moreover, it would be interesting to investigate the persistence of the results found
here in the regime of high or low Prandtl (or Schmidt) number, which are both
relevant to geophysical fluid dynamics. Note however that it is already known from
the experiments of Brouzet et al. (2016) that internal wave turbulence can be excited
in salted water, i.e. at high Schmidt number. As linear internal waves are characterised
by energy equipartition (see § 4.4), we should expect that the resonant energy transfer
towards small scale is inhibited as soon as either viscosity or diffusion balances
nonlinear advective transfer. What happens to the non-dissipated quantity and how
it interacts with the larger scale waves beyond this cutoff remains an open question.
The Prandtl (or Schmidt) number should not play any significant role in the large
scale behaviour of the flow.

Lastly, the type of turbulence resulting from the saturation of the tidally driven
instability occurs in a regime of high Reynolds, low Froude and low buoyancy
Reynolds (R) numbers, which leads to a completely different picture compared
to the high R regime frequently studied and branded as the regime relevant to
geophysical flows. In particular, the mixing coefficient is increased in the regime we
describe, and is coherent with the scaling Γ = 1/Pr that we have derived theoretically
assuming the flow is a superposition of linear internal waves only. This result is an
additional signature of wave turbulence. However, this enhanced mixing coefficient
may not result in an increase in the turbulent diapycnal diffusivity as the forcing and
the dissipation are small.

A regime of high buoyancy Reynolds number turbulence excited by the parametric
instability introduced here is possible in the very high Reynolds number limit,
but could not be investigated because it is highly demanding in resolution and
computational time, or it requires an increase of the ellipticity β to unrealistic
values. As seen earlier, events with Richardson number under 1/4 are measured in
the most extreme simulation where the dissipation is so small that the buoyancy
Reynolds number reaches ∼5. It would be interesting to see whether at high R
wave turbulence can drive strong overturning events or not, and how it would impact
the mixing coefficient and the turbulent diapycnal viscosity. Still we claim that both
regimes should be considered as relevant to geophysical applications due to the
specificity of our forcing mechanism favouring weak wave interactions. Indeed, the
buoyancy Reynolds number R can be expanded as

R=
u3

rmsRe
λresN2

. (5.1)

Assuming that the saturation results from the balance between the forcing term
A(t)u ∼ βurms and the nonlinear term u · ∇u ∼ u2

rms/λres leads to urms ∼ βλres. As a
result, the buoyancy Reynolds number goes like:

R∼ β3Re
(
λres

N

)2

. (5.2)
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Our simulations

GeophysicsStable

Increasing N

FIGURE 21. (Colour online) Schematic relative distribution of the low and high buoyancy
Reynolds number R regimes as a function of the input Reynolds number Re and the
ellipticity of the deformation β. The area covered by geophysical regimes and our
simulations is indicated in particular to highlight the fact that the low R regime is also
relevant to planetary layers in the case of bulk wave turbulence excited by tides.

The area with high R lies above a line β ∝ Re−1/3 (N/λres)
2/3. In addition, the

instability grows when the forcing overcomes the volume viscous dissipation, i.e. for
β & (λ2

resRe)−1. As a result, in the (β, Re) plane, both regimes are worth considering
in the geophysical limit where usually β is smaller than 10−3 and Re is large, as
indicated in figure 21. Note that this discussion is unchanged if we consider the
dissipation to be due to solid wall friction, for which the unstable zone lies above the
line β ∝ Re−1/2. Moreover, as indicated in figure 21, the area of small R is extended
as N is increased. In future work, it would be interesting to delimit more precisely
those two regimes. Note that a possible transition could be approached in our most
extreme simulation for which R ∼ 5. Exploring the internal wave turbulence driven
at high buoyancy Reynolds number would therefore require increasing the ellipticity
and thus the forcing intensity. This, we believe, deserves a study of its own.

Lastly, we believe the results presented here should not change as the ellipticity
is lowered provided that R < 1 and the flow is unstable. In addition, when three
waves of frequencies (ω1, ω2, ω3) exchange energy via triadic resonance, the
resonance condition on frequency must be satisfied with a tolerance O(Fr) i.e.
ω1 ± ω2 ± ω3 = O(Fr) due to detuning by larger-scale advection (see Smith & Lee
(2005) for a discussion in the analogue context of inertial waves in rotating flows).
As urms scales like βλres, decreasing β corresponds to decreasing Fr and therefore to
more exact resonances. The only significant change, we believe, is a thinner focus of
the energy along the dispersion relation of internal waves.
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